
ITERATIVE REPAIR PLANNING FOR SPACECRAFT OPERATIONS USING THE ASPEN SYSTEM

G. Rabideau, R. Knight, S. Chien, A. Fukunaga, A. Govindjee

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, MIS 525-3660, Pasadena, CA 91 109-8099

phone: +1 818 393-5364, fax: +1 818 393-5244, email: {firstname.lastname}@jpl.nasa.gov

ABSTRACT

This paper describes the Automated Scheduling and
Planning Environment (ASPEN). ASPEN encodes
complex spacecraft knowledge of operability constraints,
flight rules, spacecraft hardware, science experiments and
operations procedures to allow for automated generation
of low level spacecraft sequences. Using a technique
called iterative repair, ASPEN classifies constraint
violations (i.e., conflicts) and attempts to repair each by
performing a planning or scheduling operation. I t must
reason about which conflict to resolve first and what
repair method to try for the given conflict. ASPEN is
currently being utilized in the development of automated
plannerlscheduler systems for several spacecraft,
including the UFO-1 naval communications satellite and
the Citizen Explorer (CX1) satellite, as well as for
planetary rover operations and antenna ground systems
automation. This paper focuses on the algorithm and
search strategies employed by ASPEN to resolve
spacecraft operations constraints, as well as the data
structures for representing these constraints.

1. INTRODUCTION

Planning and scheduling technology offers considerable
promise in automating spacecraft operations. Planning
and scheduling spacecraft operations involves generating
a sequence of low-level spacecraft commands from a set
of high-level science and engineering goals. We discuss
ASPEN and its use of an iterative repair algorithm for
planning and scheduling as well as for replanning and
rescheduling.

ASPEN is a reconfigurable planning and scheduling
software framework [Fukunaga, et al., 19971. Spacecraft
knowledge is encoded in ASPEN under seven core
classes: activities, parameters, parameter dependencies,
temporal constraints, reservations, resources and state
variables. An activity is an occurrence over a time
interval that in some way affects the spacecraft. It can
represent anything from a high-level goal or request to a
low-level event or command. Activities are the central

structures in ASPEN, and also the most complicated. A
more detailed definition is given in a later section.
Together, these constructs can be used to define
spacecraft components, procedures, rules and constraints
in order to allow manual or automatic generation of valid
sequences of activities, also calledplans or schedules.

Once the types of activities are defined, specific instances
can be created from the types. Multiple activity instances
created from the same type might have diff'etent
parameter values, Including the start tlnlc Man! c ~ a m ~ l a

Imaging activitles, tal- example. can be cwatccl l i o l t l t l w
same type but wlth dlfferent Image targets and at dlftetent
start times. The sequence of activity instances is what
defines the plan or schedule.

The job of a plannerkheduler, whether manual or
automated, is to accept high-level goals and generate a set
of low-level activities that satisfy the goals and do not
violate any of the spacecraft flight rules or constraints.
ASPEN provides a Graphical User Interface (GUI) for
manual generation andor manipulation of activity
sequences. However, the automated planner/scheduler
will be the focus of the remainder of this paper.

In ASPEN, the main algorithm for automated planning
and scheduling is based on a technique called iterative
repair [Zweben, et al., 19941. In iterative repair, the
conflicts in the plan are detected and addressed one at a
time until no conflicts exist, or a user-defined time limit
has been exceeded. A conflict is a violation of a
reservation, parameter dependency or temporal constraint.
Conflicts can be repaired by means of several predefined
methods. The repair methods are: moving an actlvlty.
adding a new instance of an acllvity. deletlng a11 actlvlty.
detailing an activity, abstractmg an actlvlty, maklng a
reservation of an activity, canceling a reservation,
connecting a temporal constraint, disconnecting a
constraint, and changing a parameter value. The repair
algorithm may use any of these methods in an attempt to
resolve a conflict. How the algorithm works is largely
dependent on the type of conflict being resolved.

mailto:firstname.lastname}@jpl.nasa.gov

2. MODEL COMPONENTS AND CONSTRAINTS

Spacecraft models are developed in the ASPEN Modeling
Language (AML) [Smith, et al., 1998; Sherwood, et al.,
19981. These models are parsed into data structures that
provide efficient reasoning capabilities for planning and
scheduling. There are seven basic components to an
ASPEN model: activities, parameters, parameter
dependencles, temporal constraints, resources, state
variables, and reservations. Together, they describe what
the spacecraft can and cannot do during operations.

A parameter is simply a variable with a restricted
domain. One parameter, for example, can be the range of
integers between ten and twenty. Other parameter types
include floating point numbers, booleans and strings. A
parameter dependency is a functional relationship
between two parameters. An activity end time, for
example. is a function (the sum) of the start time and the
duratlon. A more complicated dependency might compute
the duratlon of' a spacecraft slew from the initial and final
orientation.

In the model, relative ordering constraints can be
specified for groups of activities. A temporal constraint is
a relationship between the start or end time of one activity
with the start or end time of another activity (see Figure
1). One might specify, for example, that an instrument
warming activity must end before the start of an activity
that uses the instrument. Minimum and maximum
separation distances can be specified in a temporal
constraint. The warming activity for example, might be
requlred to end at least one second but at most five
mlnutes before using the instrument. Temporal
constraints can be combined with conjunctive or
disjunctive operators to form more complicated
expressions.

Recharge Warm U p Turn On

Energy ;-
Power

Device OFF ON WARM

Figure 2: Timelines for activities, a depletable resource
(energy), a non-depletable resource (power), and a state
variable (device).

A resource represents the profile of a physical resource or
system variable over time (see Figure 2), as well as the
upper and lower bounds of the profile. In ASPEN, a
resource can either be depletable or non-depletable. A
depletable resource is used by a reservation and remains
used even after the end of the activity making the
reservation. Examples of depletable resources on
spacecraft include memory, fuel and energy. A non-
depletable resource is used only for the duration of the
activity making the reservation. Power is an example of a
non-depletable resource. A resources can be assigned a
capacity, restricting its value at any given time. A state
variable represents the value of a discrete system variable
over time. The set of possible states and the set of
allowable transitions between states are both defined with
the state variable. An example of a state variable is an
instrument switch that may be either ON, WARMING, or
OFF. This state variable may be restricted to transitions
from OFF to WARMING and not directly to ON.
Reservations are requirements of activities on resources
or state variables. For example, an activity can have a
reservation for ten watts of power. Some reservations are
modeled as instantaneous effects (e.g., reservations that
change the state on a state variable). The user can specify
whether this effect occurs at the start or end of the
activity.

Activity hierarchies can be specified in the model using
decompositions (see Figure 3). A decomposition is a set
of sub-activities along with temporal constraints between
them. In this way, one can define a high-level activity that
decomposes into a set of lower-level activities that may
be required to occur in some relative order. These
activities in turn may have their own decompositions. In
addition, an activity may have multiple decompositions to
choose from. Thus, allowing an activity to be expanded in
different ways.

I

! , f

w + / w
H H H

1 . 1

Figure 3: An activity hierarchy.

An activity has a set of parameters, parameter
dependencies, temporal constraints, reservations and
decompositions. All activities have at least three
parameters: a start time, an end time and a duration. There
is also at least one parameter dependency, relating these
three parameters. In addition, all activities have at least
one temporal constraint that prevents the activity from
occurring outside of the planning horizon. Any additional
components are optional.

3. CONFLICTS

A complete plan may not always be consistent with the
constraints in the model. A conflict is a violation of one
of the model constraints. There are nine basic types of
conflicts in ASPEN:

0 Abstract activity conflicts
Parameter dependency conflicts
Unassigned temporal constraint conflicts
Violated temporal constraint conflicts
Unassigned reservation conflicts
Depletable resource conflicts
Non-depletable resource conflicts
State usage conflicts
State transition conflicts.

Each conflict provides information about what objects are
involved and how to repair the conflict.

An abstract activity conflict is simply an activity that has
not yet been decomposed into its sub-activities. All
activities must be expanded to their most detailed level. If
an activity has more than one decomposition, the
planning algorithm must decide which decomposition to
use when detailing the activity. Detailing an activity
involves creating instances of the activities specified III

the decomposition. In addition, all temporal constralnts
and parameter dependencies must be connected among
the new sub-activities and the parent activity.

A parameter dependency conflict is a violation of a
functional relationship between two parameters. In other
words, the value of a parameter is not equal to the result

of a function that constrains that parameter value. For
example, a parameter p may be required to be the square
of another parameter q. If q is assigned to 5 and p is
assigned any value other than 25, this will be a parameter
dependency conflict. This conflict can be resolved by
assigning a different value to either p or q.

An unassigned temporal constraint conflict occurs when a
temporal constraint exists for an activity, but an activity
instance has not been selected to satisfy the constra~nt
(see Figure 4). A temporal constraint 1s defined i n one
activity type A and specifies the requirement for another
activity B within some temporal relationship. When an
instance of A is created, the temporal constraint is created
and is not initially assigned an instance of B. The conflict
computes all activity instances that can repair this conflict
(basically, all instances of type B).

A : a1

H H H
Figure 4: An unassigned temporal constraint conflict
requiring an activity of type B. Any of bl , b2 or b3
can be use, or a new instance of type B can be added.

A violated temporal constraint conflict occurs when a
temporal constraint has been assigned, but the
relationship (specified in the model) does not hold for the
two participating activities (see Figure 5). For example,
consider an activity Instance A that must end before the
start of activity Instance B by at least I O seconds but at
most 1 minute. If A ends at time t , then there is a conflict
if B does not start between time t+10 and t+60. The
conflict keeps track of the contributing activities, which
in this example includes activities A and B. In addition,
the conflict computes the start time intervals for moving
an activity that would repair the conflict. Continuing with

0 9

7 I6
I I I I I I I I I I I I I I I I I I

Figure 5: A violated temporal
constraint conflict.

. I

t l w cxample, the repalr Interval for F' would be from t + l O
to t+60. Activity A could also be moved to a different
repair interval.

An unassigned reservation conflict is a reservation in an
activity that has not been assigned to a resource or state
variable of the required type. Resource and state variable
types are defined in the model, and the plan can have
multiple instances of the same type (e.g., multiple power
sources). The plan keeps a timeline for each instance
representing the value of the resource or state variable
value. A n unasslpned reservatlon conflict is repaired by
select~ng a resout-ce 0 1 - state varlable Instance and making
the reservation (Le., propagating the effects of the
reservation on the timeline).

The most complicated types of conflicts are violated
timeline conflicts. A conflict can occur on a depletable
resource, a non-depletable resource, or a state variable.
For state variables, there are two types of conflicts: state
usage and state transition conflicts.

When a resource value a t a particular time exceeds the
m1n1111u111 o r maximum hounds of the resource. a confllct
1 5 gcncrated. Thc contrlbut~ng a c t ~ v ~ t ~ e s are the activltles
wlth reservations that use the resource during the time of
the conflict (see Figures 6 and 7). For non-depletables,
these are the reservations that overlap, exceeding the
resource bounds. For depletables, these are all
reservations on the timeline that occur at or before the
conflict. If the value is above the resource maximum (i.e.,
overuse), then contributors are only those activities with
reservations that reserve a positive value. Those with
negative values are contributors when the resource value
IS belou the minimum (i.e.. u/7rleruse). The conflict also
knous which actlvlty types would repair the conflict i f a
n ~ u Instance were created. This Includes activity types
wlth negatwe usage for overuse conflicts and types with

contributors

""""""""""""""""""""""""""".

1
'I i -
b, t"---------l

Figure 6: Time intervals that resolve a depletable
resource conflict by a) moving a positive contributor or
b) adding a negative contributor.

positive usage for underuse conflicts. The conflict also
computes the start times indicating where to move or add
activities in order to repair the conflict (see Figures 6 and
7). For moving existing activities, repair start times are all
times except during the conflict. For adding new
activities, repair start times are just the opposite-times
during the conflict.

contributors . .? ..
./. . '

.....
.

.. I I,. .?>

Figure 7: Time intervals that resolve a non-depletable
resource conflict by a) moving a positive contributor or
b) adding a negative contributor.

A state variable can have a conflict in two ways: when a
reservation requires a state that is not available for the
duration of the reservation (i.e., state usage conflict), or
when a reservation makes a transition that is not allowed
by the state variable (Le., state transition conflict). The
contributors of a state usage conflict include the activity
that changes the state (called a changer) and all activities
that use a state (called users) that are different from the
state during the time of the conflict (see Figure 8). In
order to fix this conflict, the users might be moved
anywhere but over the state in conflict. Otherwise, if we
decide to move the changer, it must be moved to a time
later than the state in conflict or earlier than the previous
state so that this changer no longer affects the state
required by the conflicting users. For state transition

WannI Turnoff1 TurnOnl TumOftZ

H H H H H H
UseOn I

WARM OFF ON OFF

a) - I"
b) I"
C) H
4 - -
e) tl -
f) w

Figure 8: Time intervals that resolve a state variable
usage conflict by a) moving UseOnl b) moving
Turnoff2 or c) adding TurnOn; and time intervals that
resolve a state variable transition conflict by d) moving
TurnOnl e) moving Turnoff1 or f) adding Warm.

conflicts, the contributor is only the activity that changes
the state (i.e., makes the illegal transition). Again, the
changer must be moved to a time later than the state in
conflict or earlier than the previous state. As with
resource conflicts, new activities can be created to repair
state variable conflicts. For a state usage conflict, we can
add activities that can change to the desired state. These
activities must be added at a time before the conflicting
user, but after the conflicting changer. For state transition
conflicts, we can add activities that can change to a state
that makes a legal transition. These activities must be
added between the two conflicting changers.

4. ITERATIVE REPAIR SEARCH

ASPEN organizes its search around several types of
constraints that must hold over valid plans. ASPEN then
has organized around each constraint type, a classification
of the ways in which the constraint may be violated.
These violations are called conflicts. Organized around
each conflict type, there is a set of repair methods. The
search space consists of all possible repair methods
applied to all possible conflicts in all possible orders. We
describe one tractable approach to searching this space.

The iterative repair algorithm searches the space of
possible schedules in ASPEN by making decisions at
certain choice points, and modifying the schedule based
on these decisions. The choice points are:

Selecting a conflict
Selecting a repair method
Selecting an activity for the chosen repair method
Selecting a start time for the chosen activity
Selecting a duration for the chosen activity

0 Selecting timelines for reservations
0 Selecting a decomposition for detailing

Selecting parameters to change
Selecting values for parameters

Given a schedule with a set of conflicts of all types, the
first step in the iterative repair algorithm is to select one
of the conflicts to be attacked. Next, a method is selected
for repairing the conflict. All possible repair methods are:

Moving an existing activity to a new location
Creating a new activity and insert at a location
Deleting an existing activity
Connecting a temporal constraint between two

Disconnecting a temporal constraint between two

Detailing an activity
Abstracting an activity
Making reservations of an activity
Canceling reservations of an activity
Grounding a parameter in an activity

activities

activities

Applying a dependency function between two

As described in the previous section, the type of conflict
will detemline the set of possible repair methods for any
given conflict. If it was decided to try to move or delete
an activity, the algorithm must decide which activity to
move or delete. The type of conflict and the location of
the conflict will determine the set of possible activities
that, if moved or deleted. may resolve the contllct. I n
addition. a new start tme and d u r a t ~ o n musl ht. as5Ignt.d
to the actlvity. If It was declded to try to ddd a neb
activity, the activity type must be chosen from the hst of
possible types determined by the conflict. For abstract
activity conflicts, the repair algorithm will most likely
choose to detail the activity. If it has multiple
decompositions, one of them must be chosen. Deciding to
abstract an activity requires choosing which activity to
abstract. When making a reservation in an attempt to
resolve a conflict, a resource or state variable must be
chosen for the set of possible resources or state variables.
Also, if the reservatlon has an unspecified value. one
must be chosen for I t . Canceling r e s e ~ n a t ~ o n s o n l)
requires choosing whlch reservatwn to cancel. I I the
repair algorithm has decided to connect a temporal
constraint, the specific activity for the constraint must be
selected. When disconnecting, only the constraint to be
disconnected must be chosen. Finally, changing a
parameter value requires choosing a new value for the
parameter. After all decisions are made and the repair
method is performed, the effects are propagated and the
new conflicts are computed. This process repeats until no
conflicts exist or a time limit has been exceeded.

parameters

5 . SEARCH HEURISTICS

All throughout the iterative repair algorithm, many
decisions must be made. In other words, there are many
ways in which a conflict may be resolved. Some ways
ultimately work better than others do. For example,
deleting an activity may resolve a resource conflict
caused by that activity. However, that activity may have
been required by other activities. Or, if the activity was a
high-level goal, the user might prefer to have as many
goals satisfied as possible. Another typical example
involves choosing a locatlon to move an actlvity. M a n y
locations may resolve the conflict bcmg addressed, bur
many locations may also create additlon contllcts. In
order to guide the search toward more fruitful decisions,
the user can define a set of search heuristics.

In ASPEN, a heuristic is a function that orders and prunes
a list of choices for a particular decision in the search.
Heuristics can be defined at each of the choice points in
the algorithm. For example, one heuristic might sort the

1151 ol~contl~cts. Indlcatrny whlch confllcts to address first.
In addltlon, each heuristlc can use the knowledge of all
previous decisions made. For example, the heuristic for
deciding which method to use to resolve the conflict can
(and should) be dependant on which conflict was chosen.
Each heuristic can be assigned a confidence level that
indicates how often the heuristic should be used. When
the heuristic is not used, other heuristics can be specified,
otherwise the decision will be made randomly.

ASPEN currently has some built-in domain-independent
heurlstlcs that can be used for repamng conflicts. First, a
hcurlstlc eslsts tor sortlng conflicts by their type. This
heurlstlc prefers conflicts that require new activities (Le.,
planning type conflicts) and then considers conflicts on
timelines (Le., scheduling type conflicts). This heuristic
seems to work well and therefor has a high level of
confidence for most of our models.

There is also a heuristic for selecting the repair method
for a given conflict type. This heuristic prefers moving
activities for repairing most types of conflicts. If move is
not selected, the next preferred method is adding new
a c t ~ v ~ t r e s . Fmally. a small percentage of the time, it will
choose to delete an actlvlty. Obviously, these methods are
only chosen for those conflicts for which they make sense
(e g , timeline conflicts). Some conflicts have only two
possible repair methods, one of which is to delete,
therefor making the decision much easier (e.g., undetailed
activity conflicts can only be resolved by detailing or
deleting the activity).

Another significant heuristic available in ASPEN is a
heuristic for selecting start time intervals for activities
helng moved or created. This heuristic first tries selecting
start [lme Intervals that not only resolve the current
confllc[but also do not cleat? any new conflicts’. If there
are no such start tlmes, the heuristic may try selecting
times that create only a few conflicts. If this list is also
empty, then it may select start times that simply resolve
the current conflict. Sometimes, however, it may decide
to return an empty list, indicating that this particular
activity should not be moved or added.

A few other heuristics are currently being used in some of
the domains modeled in ASPEN. All of them, however,
at-e relatively slmple and work well for the wide range of
A S P E N models.

I In general, ASPEN provides functions for querying the
current plan about operations that can be performed or
values that can be assigned without creating new
violations. These algorithms are interesting in their own
right, and will be discussed in future work.

6. CONCLUSIONS AND FUTURE WORK

Planning and scheduling technology offers considerable
promise in automating spacecraft operations. Planning
and scheduling spacecraft operations involves generating
a sequence of low-level spacecraft commands from a set
of high-level science and engineering goals. We have
extended and implemented a technique called iterative
repair for automatically resolving conflicts in a
pladschedule. In addition, we have isolated a set of
conflict types that identify plan violations as well as
suggest ways in which to repair the violation.

Current and future work includes integrating repair
planning with execution [Chien, et al., 19991. Here, the
idea is to continuously replan around updated information
coming from execution monitoring. As an embedded
system, ASPEN would enable fast response to unforeseen
events (e.g., faults or science opportunities) with little or
no human interaction. In addition, we are also working on
a framework for plan optimization. In this case, the
objective is to find plans with high quality in addition to
being conflict-free. We take an approach that parallels
iterative repair called iterative optimization. Here, we
classify a set of user preferences for certain plan
characteristics. These preferences are used to calculate a
score for the plan. The iterative optimization algorithm
makes plan modifications suggested by the preferences in
order to increase the overall score.

REFERENCES

Chien, S., Knight, R., Stechert, A., Shenvood, R., and
Rabideau, G., “Integrated Planning and Execution for
Autonomous Spacecraft,” Proceedings of the 1999 IEEE
Aerospace Conference, Aspen, CO, March, 1999.

Fukanaga, A., Rabideau, G., Chien, S., and Yan, D.,
“Toward an Application Framework for Automated
Planning and Scheduling,” Proceedings of the 1997
International Symposium of Artljcial Intelligence,
Robotics and Automation for Space (iSAIRAS-97),
Tokyo, Japan, July 1997

Zweben, M., Daun, B., Davis, E., and Deale, M.,
“Scheduling and Rescheduling with Iterative Repair,”
Intelligent Scheduling, Zweben, M., and Fox, M., eds.,
Morgan Kaufmann, 1994, pp.241-256.

Sherwood, R., Govindjee, A., Yan, D., Rabideau, G.,
Chien, S., Fukunaga, A., “Using ASPEN to Automate
EO-1 Activity Planning,” Proceedings of the 1998 IEEE
Aerospace Conference, Aspen, CO, April, 1998.

Artificial Intelligence Planning Systems Wol*kshop on
Smith, B., Shenvood, R., Govindjee, A., Yan, D., Knowledge Acquisition, Pittsburgh, PA, 1998.
Rabideau, G., Chien, S., Fukunaga, A., “Representing
Spacecraft Mission Planning Knowledge in ASPEN,”

